Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 270: 107299, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778108

RESUMO

Current operational models for nuclear cloud rise over land were developed and validated using observations from shallow-buried or surface detonations, where lofted soil quickly mixed with fission products from the detonation. These models poorly predict fallout from elevated detonations near the fallout-free height of burst (FFHOB), where interactions with the ground are limited and the mixing of fission products and lofted soil is incomplete. Fallout-free is a misnomer at this HOB, as fallout was observed in these cases, but was below the levels of concern, especially off-grounds of the nuclear test site. To correctly characterize and model fallout from detonations near the FFHOB, models must be developed which can capture the stratified nature of the particle and activity-size distributions within the cloud. Previously, it was shown that the Weather Research and Forecasting (WRF) model can accurately simulate nuclear cloud rise for airbursts with little to no ground interactions (Arthur et al., 2021). That work is expanded here by (1) using a radiation-hydrodynamics code to improve the fireball initialization in WRF, (2) further developing an aerosol package from WRF-Chem to simulate lofted soil, and (3) combining the WRF cloud rise simulations with the operational models used at the National Atmospheric Release Advisory Center (NARAC) for fallout modeling. Using this combination of codes, the Upshot-Knothole Grable detonation, which was just below the FFHOB, is simulated from seconds after detonation through cloud rise and fallout, and results are compared to historical test data. The results show improved prediction of dose rate and highlight the need to correctly characterize the entrainment of material into the cloud and the subsequent mixing of fission products with entrained material.


Assuntos
Monitoramento de Radiação , Cinza Radioativa , Cinza Radioativa/análise , Monitoramento de Radiação/métodos , Modelos Teóricos , Tempo (Meteorologia) , Aerossóis/análise
2.
Health Phys ; 110(5): 491-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27023036

RESUMO

The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.


Assuntos
Poluentes Radioativos do Ar/análise , Lantânio/análise , Modelos Teóricos , Monitoramento de Radiação , Liberação Nociva de Radioativos , Atmosfera , Simulação por Computador , Humanos , Meteorologia , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...